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ABSTRACT

Training a precise binary classifier with limited supervision in weakly supervised
learning scenarios holds considerable research significance in practical settings.
Leveraging pairwise unlabeled data with confidence differences has been demon-
strated to outperform learning from pointwise unlabeled data. We theoretically
analyze the various supervisory signals reflected by confidence differences in con-
fidence difference (ConfDiff) classification and identify challenges arising from
noisy signals when confidence differences are small. To address this, we parti-
tion the dataset into two subsets with distinct supervisory signals and propose a
consistency regularization-based risk estimator to encourage similar outputs for
similar instances, mitigating the impact of noisy supervision. We further derive
and analyze its estimation error bounds theoretically. Extensive experiments on
benchmark and UCI datasets demonstrate the effectiveness of our method. Addi-
tionally, to effectively capture the influence of real-world noise on the confidence
difference, we artificially perturb the confidence difference distribution and demon-
strate the robustness of our method under noisy conditions through comprehensive
experiments.

1 INTRODUCTION

Weakly supervised learning is an essential research field in machine learning, focusing on training
accurate predictive models under conditions of low supervision or imprecise labeling. Due to the
difficulty of obtaining precise supervision in real-world scenarios, weakly supervised learning holds
significant research value and significance for effectively leveraging limited available supervision
information. Consequently, the field of weakly supervised learning has increasingly attracted attention
from experts and scholars in recent years, leading to the emergence of many typical weakly supervised
learning methods, such as multi-instance learning [32; 30; 24; 19], positive and unlabeled (PU)
learning [10; 5; 31; 16; 23], and others.

A prevalent idea in weakly supervised classification involves maximizing the utilization of pointwise
weakly supervised information [4], thereby prompting the development of various techniques based
on soft labels [18; 26], mixup [28; 21; 27; 9; 7; 13], and others. Nevertheless, it is undeniable that
annotating pointwise information in real-world classification problems is a complex and laborious
task, further compounded by the personal biases of annotators which frequently exacerbate the
probability of inaccuracies. In such scenarios, pairwise comparison information between data points
may be more readily obtainable in real-world settings than pointwise information, and it often exhibits
greater resistance to biases compared to pointwise semi-supervised information [1]. For instance,
in medical diagnosis, accurately determining whether a patient has a disease solely based on their
presented symptoms is challenging. However, comparing the symptoms of this patient with those of
others provides more accessible information and reduces the probability of misdiagnosis. Extensive
research has been conducted on pairwise analysis in numerous binary classification problems, leading
to the development of risk minimization functions capable of inducing binary classifiers across
various combinations of pairwise similarities, dissimilarities, and unlabeled data [1; 20; 14; 15; 22].

In recent work, pairwise comparison (Pcomp) classification has shown that in tackling difficult
point labeling tasks, people can more easily gather comparative information between two examples,
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constituting a form of weakly supervised information [4]. However, in real-world application scenar-
ios, individuals may not only distinguish which of two examples is more likely to be classified as
positive over the other but also gauge the extent of the disparity in their confidence levels regarding
positivity. In light of this framework, Wang et al. introduced a new pairwise weakly supervised
classification problem called confidence-difference (ConfDiff) classification, and proposed the cor-
responding ConfDiff method [22]. To establish confidence difference, the ConfDiff method first
utilizes binary-labeled data to train a probability classifier. Subsequently, unlabeled data pairs are fed
into the classifier to generate posterior probabilities, from which confidence difference are computed
based on the differences between these posterior probabilities. However, through the analysis of the
various supervised signals in the ConfDiff method, we identify that ConfDiff method encourages
unlabeled data pairs to predict opposite classes from both experimental and theoretical perspectives.
This prediction direction is valid when the confidence difference is large. However, when the con-
fidence difference is small, the instances may belong to the same or different classes, and such a
predictive tendency may lead to samples from the same class being incorrectly classified as belonging
to different classes, thereby introducing noisy supervisory signals.

To handle this problem, in this paper, we concentrate on mitigating the impact of inaccurate predictions
when confidence differences are small. Specifically, we analyze the different supervised signals
induced by varying confidence differences in the ConfDiff method. We find that pairwise instances
with small confidence differences tend to introduce noisy supervised signals, while those with larger
confidence differences provide more reliable supervision. Based on this observation, we propose
a ConfDiff classification method that incorporates consistency regularization. By partitioning the
dataset based on the accuracy of predictive information, we introduce a consistency regularization term
for the subset with relatively precise predictions, encouraging the model to produce similar outputs
for pairs with small confidence differences. Meanwhile, for the subset with relatively imprecise
predictions, we preserve the benefit of reliable supervised signals. Experimental results demonstrate
that our method outperforms existing baselines in most cases and exhibits strong robustness even
under artificial noise interference.

In summary, this paper’s key contributions can be outlined as follows:

• We introduce a method for ConfDiff classification which aims to enhance the accuracy of
weakly supervised classification by constructing risk estimator through Consistency Risk
and Consistency Regularization (CRCR).

• We theoretically analyze various supervised signals reflected by different confidence differ-
ences in ConfDiff classification. Additionally, we theoretically estimate the error bounds of
our proposed method.

• We validate the effectiveness of our method through experiments by comparing it with
existing baselines on datasets of varying scales. In addition, the robustness of our method is
further validated under the influence of artificially added noise.

2 PRELIMINARIES

In this section, we briefly review the problem definitions of binary classification, binary classification
with soft labels, and ConfDiff classification.

Formulation of binary classification Binary classification is a typical task in the field of supervised
learning, where the goal is to induce a classifier to partition the data space into two categories.
Formally, let X = Rd and Y = {−1,+1} be the d-dimensional feature space and label space,
respectively. The dataset DBC = Dp

BC ∪ Dn
BC for binary classification consists of a positive dataset

Dp
BC and a negative dataset Dn

BC:

Dp
BC = {(xp

i ∈ X , ypi = +1)}np

i=1, x
p
i

i.i.d.∼ p(x|y = +1),

Dn
BC = {(xn

i ∈ X , yni = −1)}nn
i=1, x

n
i

i.i.d.∼ p(x|y = −1),

where np and nn denote the number of positive and negative instances, respectively. Let π denotes the
class prior p(y = +1) and ℓ : R×Y → R+ denotes a binary loss function. Then binary classification
induces a classifier g : X → R from DBC by minimizing the following classification risk:

R(g) = πEp(x|y=+1)[ℓ
(
g(x
)
,+1)] + (1− π)Ep(x|y=−1)[ℓ

(
g(x),−1

)
]. (1)
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Formulation of binary classification with soft labels In binary classification, soft labels typically
represent the confidence of each sample belonging to the positive class. Moreover, several studies have
shown that using soft labels rather than hard labels can more accurately reflect the data distribution,
thus enhancing the accuracy of training binary classifiers. Formally, let qi denotes the positive
confidence of xi, the dataset DBC-soft for binary classification can be defined as follows:

DBC-soft = {(xi, qi)}ni=1, xi
i.i.d.∼ p(x), qi = p(yi = +1|xi),

where p(x) = πp(x|y = +1) + (1− π)p(x|y = −1). Subsequently, the risk minimization objective
function for binary classification with soft labels can be reformulated into the following form:

RBC-soft(g) = Ep(x)[qℓ
(
g(x
)
,+1) + (1− q)ℓ

(
g(x),−1

)
]. (2)

Formulation of confidence-difference (ConfDiff) classification Given that pairwise supervision
is typically more accessible than pointwise supervision and it’s feasible to not only determine
which sample in an unlabeled data pair is more likely positive but also quantify the confidence
difference between them in practical scenarios, ConfDiff classification precisely serves as a weakly
supervised classification tailored to address this scenario. It specifically deals with weakly supervised
classification problems where training data comprises only pairwise unlabeled data and the confidence
difference associated with each pair. Formally, let ci = c(xi,x

′
i) = p(y′i = +1|x′

i)− p(yi = +1|xi)
be the confidence difference between pairwise unlabeled data (xi,x

′
i) drawn from a independent

identically distribution probability density p(x,x′) = p(x)p(x′). Considering a pairwise dataset D
drawn from the pairwise unlabeled data and the confidence differences between them:

DCD = {
(
(xi,x

′
i), ci

)
}ni=1, xi

i.i.d.∼ p(x), x′
i
i.i.d.∼ p(x).

In a recent study, Wang et al. tackled the ConfDiff classification problem in such challenging
scenarios [22]. They deduced an unbiased risk estimator for confidence-difference classification from
Eq. 1 and trained a binary classifier solely utilizing unlabeled data and confidence differences by
minimizing it. The classification risk can be expressed as:

RCD(g) =
1

2
Ep(x,x′)[L(x,x′) + L(x′,x)], (3)

where L(x,x′) =
(
π− c(x,x′)

)
ℓ
(
g(x),+1

)
+
(
1− π− c(x,x′)

)
ℓ
(
g(x′),−1

)
. Then Eq. 3 can be

refined as follows:

RCD(g) =
1

2
Ep(x,x′)[

(
π − c(x,x′)

)
ℓ
(
g(x),+1

)
+
(
1− π − c(x,x′)

)
ℓ
(
g(x′),−1

)
+
(
π + c(x,x′)

)
ℓ
(
g(x′),+1

)
+
(
1− π + c(x,x′)

)
ℓ
(
g(x),−1

)
]. (4)

3 THE PROPOSED METHOD

In this section, we introduce the proposed noisy ConfDiff method named CRCR.

3.1 ANALYSIS OF THE CONFDIFF METHOD

In the ConfDiff method, pairwise instances with confidence differences smaller than 0.5 are prone to
introducing noise, while those with larger confidence differences (greater than 0.5) are considered to
provide stronger and more reliable supervised signals. To explain this, we consider the general form
of many commonly used losses for the prediction function g(x) and target y [29]:

L =
{
ℓ
(
g(x), y

)
|ℓ
(
g(x), y

)
= h

(
g(x)

)
− yg(x) for some function h

}
, (5)

Substituting the form of the loss function from Eq.5 into Eq.4, then the classification risk of ConfDiff
method can be rewritten as follows and the proof details are presented in the Appendix B:

RCD(g) =
1

2
Ep(x,x′)

[(1
2
− c(x,x′)

)
ℓ
(
g(x),+1

)
+
(1
2
+ c(x,x′)

)
ℓ
(
g(x′),+1

)]
+
1

2
Ep(x,x′)

[(1
2
+ c(x,x′)

)
ℓ
(
g(x),−1

)
+
(1
2
− c(x,x′)

)
ℓ
(
g(x′),−1

)]
+
1

2
Ep(x,x′)

[
(1− 2π)

(
g(x) + g(x′)

)]
. (6)
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Figure 1: The Accuracy for the binary classifier concerning different proportion of pairwise data with
|c(x,x′)| > 0.5 on two benchmark datasets MNIST (left) and CIFAR-10 (right). (The value of the
x-axis values ∗min(π, 1− π) denotes the proportion of pairwise instances with |c(x,x′)| > 0.5.)

where the first and second terms denote the pairwise instance (x,x′) contrastive losses for positive and
negative class predictions, respectively; and the third term serves as a regularization. We first analyze
the critical components of the first term, where the weights 1

2 − c(x,x′) and 1
2 + c(x,x′) determine

the contributions of x and x′ to the positive class prediction loss, respectively. These weights exhibit
an inherent balance, as their sum equals 1, indicating that 1

2 serves as a boundary distinguishing
the prediction directions. The weights lie on opposite sides of this boundary, ensuring that one of
x or x′ is encouraged to predict more strongly as the positive class, while the other is encouraged
to weaken its positive class tendency (i.e., predict as the negative class). In other words, the first
loss term ensures x and x′ to adjust their predictions in opposite directions, thereby emphasizing the
predictive divergence of pairwise instances in the positive class predictions. Similarly, the second
loss term forces to diverge in their predictions for the negative class.

Referring to the definition of c(x,x′), if |c(x,x′)| > 0.5, x and x′ must belong to different classes;
and if |c(x,x′)| ≤ 0.5, x and x′ can belong to the same class or different classes, as the posterior
difference is insufficient to surpass the classification threshold. So the prediction trend encouraged by
RCD holds correctly for pairwise instances with |c(x,x′)| > 0.5. However, when |c(x,x′)| ≤ 0.5,
the prediction trend may lead to samples from the same class being predicted as belonging to different
classes, introducing erroneous supervisory signals. Accordingly, we consider that the pairwise
instances whose confidence difference are greater than 0.5 contain more supervised signals, but the
other ones may result in noisy signals in the existing ConfDiff method.

To further validate this perspective, we conduct experiments on the MNIST and CIFAR-10 by varying
the proportion of the pairwise instances with |c(x,x′)| > 0.5. The empirical results (see in Figure 1)
illustrate the accuracy of the binary classifier under different proportions of the pairwise instances
with |c(x,x′)| > 0.5. We observe a positive correlation between classification accuracy and the
proportion value. Notably, when the proportion is 0, the classifier accuracy is approximately 0.5,
indicating that the classifier performs nearly at random. These findings demonstrate that the pairwise
instances with |c(x,x′)| > 0.5 provide stronger and more reliable supervised signals and dominate
the contribution to RCD.

3.2 CRCR METHOD

Based on the discussion in Section 3.1, it is demonstrated that noise signals is introduced when
|c(x,x′)| ≤ 0.5, while it remains more supervised signals when |c(x,x′)| > 0.5. To address
it, we propose setting a threshold θ to partition the dataset into two subsets: one with relatively
precise predictive information (denoted as DS) and the other with comparatively imprecise predictive
information (denoted as DC). For DC , we aim to provide additional information to guide the
predictions of pairwise instances toward the correct direction. Specifically, for pairwise instances
with small confidence differences, we encourage the model to produce more similar outputs for these
pairs. To achieve this, we introduce a consistency regularization term that encourages alignment
between the confidence difference and the model’s outputs. Meanwhile, for DS , we retain the original
strategy to preserve the accuracy of predictions driven by this strong guidance. Our objective is to
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induce a classifier g: Rd → Y from D by minimizing the expected risk with respect to the data
distribution:

RCRCR(g) =
1

2
EpDS (x,x′)[

(
π − c(x,x′)

)
ℓ
(
g(x),+1

)
+
(
1− π − c(x,x′)

)
ℓ
(
g(x′),−1

)
+
(
π + c(x,x′)

)
ℓ
(
g(x′),+1

)
+
(
1− π + c(x,x′)

)
ℓ
(
g(x),−1

)
]

+αEpDC (x,x′)[
( 1

log (|c(x,x′)|+ ε)

)
· ∥g(x)− g(x′)∥2], (7)

where α denotes the parameter of the consistency regularization term, and ε = 1.1 is a smoothing
parameter introduced to mitigate numerical issues when |c(x,x′)| approaches or equals zero. Let∣∣DS

∣∣ = n1 and
∣∣DC

∣∣ = n2. Then the risk estimator can be expressed as follows:

R̂CRCR(g) =
1

2n1

n1∑
i=1

(
(π − ci)ℓ

(
g(xi),+1

))
+ (1− π − ci)ℓ

(
g(x′

i,−1
)
+ (π + ci)ℓ

(
g(x′

i),+1
)

+(1− π + ci)ℓ
(
g(xi),−1

))
+

α

n2

n2∑
i=1

(
1

log (|ci|+ ε)
· ∥(g(xi)− g(x′

i)∥2

)
. (8)

3.3 ANALYSIS OF ERROR BOUND

Assuming there exists a constant Cg such that supg∈G ∥G∥∞ ≤ Cg, and another constant Cℓ such
that sup|z| ≤ Cg and ℓ(z, y) ≤ Cℓ. Additionally, we presume the binary loss function ℓ(z, y) to be
Lipschitz continuous with respect to both z and y, and to have a Lipschitz constant denoted by Lℓ.
Rn1

(G) and Rn2
(G) denote the Rademacher complexity of unlabeled data G with size n1 and n2,

respectively.
Theorem 1. Let g∗ = arg ming∈GR(g) is the minimizer of the true classification risk in Eq.1 and
ĝCRCR = arg ming∈GR̂CRCR(g) denotes the minimizer of the risk form in Eq.8. Then for any δ > 0,
we believe that the following expression holds with a probability at least 1− δ:

R(ĝCRCR)−R(g∗) ≤8LℓRn1(G) +
4α

log (ε)
Rn2(G)

+

(
4Cℓ

n1
+

∣∣∣∣ 1

log (ε)
− 1

log (θ + ε)

∣∣∣∣ 4αCg

n2

)√
2nIn(2/δ). (9)

Due to the space limitation, the proof details are presented in the Appendix A. As n1, n2 → ∞,
the Rademacher complexities Rn1

(G) and Rn2
(G) decrease to zero, and the third term involving√

n/n1 and
√
n/n2 also diminishes. Furthermore, the convergence rates of Rn1(G) and Rn2(G) are

O(1/
√
n1) and O(1/

√
n2), while the third term’s rate is dominated by O(

√
n/n1) and O(

√
n/n2).

Consequently, as n → ∞, R(ĝCRCR) → R(g∗), and the overall convergence rate is characterized by
O (max(

√
n/n1,

√
n/n2)).

3.4 EMPIRICAL RISK CORRECTION

It can potentially lead to severe overfitting problems when the empirical risk becomes negative due to
the application of a revised unbiased form. Fortunately, risk correction functions f(·) can be utilized
to mitigate this issue. Examples include the absolute value function or the rectified linear unit (ReLU)
function. Consequently, the corrected risk estimator can be expressed as follows:

R̃CRCR(g) =
1

2n1
f
( n1∑
i=1

(π − ci)ℓ
(
g(xi),+1

))
+

1

2n1
f
( n1∑
i=1

(1− π − ci)ℓ
(
g(x′

i,−1
))

+
1

2n1
f
( n1∑
i=1

(π + ci)ℓ
(
g(x′

i),+1
))

+
1

2n1
f
( n1∑
i=1

(1− π + ci)ℓ
(
g(xi),−1

))
+α

1

n2
f

(
n2∑
i=1

(
1

log (|ci|+ ε)
· ∥(g(xi)− g(x′

i)∥2

))
. (10)
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Table 1: Detailed characteristics of datasets.
Dataset #Instance #Trainset #Testset #Fea Pos Class Neg Class Backbone
MNIST 70,000 15,000 5,000 28× 28 0,2,4,6,8 1,3,5,7,9 3-layer MLP

F-MNIST 70,000 15,000 5,000 28× 28 0,2,4,6,8 1,3,5,7,9 3-layer MLP
K-MNIST 70,000 15,000 5,000 28× 28 0,2,4,6,8 1,3,5,7,9 3-layer MLP
CIFAR-10 60,000 10,000 5,000 3× 32× 32 2,3,4,5,6,7 0,1,8,9 ResNet-34
Optdigits 5,620 1,200 1,125 62 0,2,4,6,8 1,3,5,7,9 Linear
Pendigits 10,992 2,500 2,199 16 0,2,4,6,8 1,3,5,7,9 Linear

Additionally, we report corresponding versions in the experiments that utilized absolute risk correction
function (CRCR-ABS) and ReLU risk correction function (CRCR-ReLU).

4 EXPERIMENTS

In this section, we empirically evaluate the proposed CRCR method.

4.1 EXPERIMENTAL SETTINGS

Datasets For comprehensive experimentation, we employ four popular benchmark datasets, includ-
ing MNIST [12], Kuzushiji-MNIST (K-MNIST)[3], Fashion-MNIST (F-MNIST)[25] and CIFAR-
10[11]. Additionally, experiments are conducted on two UCI datasets[2], including Optdigits and
Pendigits. These datasets encompass more than just two labels, therefore, we categorize the class
labels into positive and negative classes, effectively transforming them into binary classification
datasets. Furthermore, for each dataset, we randomly selected m%× n instances to add noise, where
the noise ratio m is varied over [0, 50, 75, 100]. As a result, in our experiments, we generate 24
synthetic datasets in total.

Furthermore, we choose different models as backbones based on the varying feature dimensions
of each dataset. Specifically, for MNIST, K-MNIST and F-MNIST, we use a 3-layer multilayer
perceptron (MLP) with three hidden layers of width 300 equipped with the ReLU [17] activation
function and batch normalization [8]. For CIFAR-10, we train a ResNet-34 model [6] as the backbone.
For all UCI datasets, we use a linear model for training. The detailed information for each dataset is
presented in Table 1.

Baseline methods We employ seven state-of-the-art algorithms for comparison, including four
Pcomp methods (i.e., PcompTeacher, PcompABS, PcompReLU and PcompUnbiased) and three
ConfDiff methods (i.e., ConfDiffABS, ConfDiffReLU and ConfDiffUnbiased). Details of baselines
are described as follows:

• Pointwise Binary Classification with Pairwise Confidence Comparisons (Pcomp) [4]: A
weakly supervised learning method that trains a binary classifier using pairwise comparison
data, composed of unlabeled data pairs where one is more likely to be positive, instead
of using pointwise data. Pcomp comprises four versions: PcompTeacher, PcompABS,
PcompReLU, and PcompUnbiased. We use the code provided by its authors 1.

• Binary Classification with Confidence Difference (ConfDiff) [22]: A weakly supervised
learning method that trains a binary classifier using pairwise comparison data, which
consists of pairwise unlabeled data where the difference in the probabilities of being positive
(confidence difference) is known. ConfDiff comprises three versions: ConfDiff-ABS,
ConfDiff-ReLU, and ConfDiff-Unbiased. We utilize the publicly available code online 2.

Implementation details For each comparison method under every experimental configuration, we
execute the code five times, employing the logistic loss function and Adam optimizer consistently.
Specifically, during the training phase, each run is independently performed for 200 epochs with a
batch size of 256. In balanced scenarios (i.e., π = 0.5), the learning rate is set to 10−3 across all

1https://lfeng1995.github.io/codedata.html
2https://github.com/wwangwitsel/ConfDiff
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datasets, with weight decay parameters set to 10−5 for MNIST, K-MNIST, F-MNIST, and Pendigits,
10−4 for Optdigits, and 10−3 for Pendigits. In imbalanced scenarios (i.e., π = 0.2), the learning rate
is set to 10−4 for MNIST and K-MNIST, and 10−3 for the remaining datasets, with weight decay
parameters set to 10−4 for K-MNIST and Optdigits, and 10−5 for the remaining datasets. During the
pretraining phase, each run is independently executed for 20 epochs with a batch size of 256. The
learning rate and weight decay remain consistent with those in the training phase. All experiments
are conducted on a server equipped with two Nvidia RTX 4090 GPUs.

4.2 CONSTRUCTION OF THE CONFIDENCE DIFFERENCES

In this subsection, we present the confidence differences construction method to address the challenge
of fitting scenarios where precise posterior probabilities are difficult to obtain, along with a noise
generation method to validate the robustness of our method under noisy conditions.

The confidence differences construction method. The ConfDiff method generates class posterior
probabilities using a logistic regression-based probabilistic classifier trained on labeled data and
calculates the confidence difference according to its definition. Although this generation method
benefits comprehensive experimental analysis, it fails to accurately reflect the posterior probability
distribution derived from manual annotations in real-world scenarios. Inspired by this, we incorporate
an a posterior probability construction method based on outlier detection into the probabilistic
classifier and computed confidence differences according to its definition to achieve a more uniform
and realistic distribution. Specifically, we apply Gaussian kernel-based probability density estimation
method to discrete posterior probabilities.

d̂(xi) =
1

nh
√
2π

n∑
j=1

exp

(
− (xi − xj)

2

2h2

)
, (11)

where d̂(xi) represents the estimated probability density function at instance xi and exp
(
− (xi−xj)

2

2h2

)
is the standard Gaussian kernel function. Furthermore, h denotes the kernel bandwidth, which controls
the degree of smoothing. This parameter is adaptively set based on the standard deviation of the
probability distributions used in our work. We identify instances with densities below the threshold
o as outliers. (Notably, o is also adaptively determined based on different probability density
distributions. In our work, it is set at the 2nd percentile of the probability density to avoid filtering
out too many instances.) The posterior probabilities of remaining non-outlier instances, are then
rescaled to ensure a more uniform distribution within the range [0, 1].

p(yi = +1|xi) =

{
Scaling (p(yi = +1|xi)) , if d̂(xi) ≤ o
p(yi = +1|xi), otherwise

(12)

where Scaling (·) denotes a scaling function as:

Scaling (p(yi = +1|xi)) =

{
log(p(yi = +1|xi) + ϑ), if p(yi = +1|xi) ≤ 0.5
log(1− p(yi = +1|xi) + ϑ), otherwise

(13)

where ϑ = e−10 is a smoothing parameter. Then, the confidence difference can be calculated
according to its definition c(xi,x

′
i) = p(y′i = +1|x′

i)− p(yi = +1|xi).

The noise generation method. One straightforward method is to add noise directly to c. However,
this method overlooks the intrinsic logic behind the original construction of c. We might be more
interested in observing how the noise impacts the posterior probability distribution, thereby further
influencing c indirectly. Then, we focus on adding noise to the posterior probabilities generated by
the probabilistic classifier, thereby indirectly adding noise to c. In the real world, individuals tend to
exhibit smaller judgment biases towards more similar sample pairs, while generating larger biases
towards samples with lower similarity. Therefore, White Gaussian Noise (WGN) is introduced into
the posterior probabilities p(yi = +1|xi) and p(y′i = +1|x′

i) provided by the probabilistic classifier
for the instance pair (xi,x

′
i). Then, the noisy posterior probabilities are used to generate the label

confidence difference, i.e., c̃i = c̃(xi,x
′
i) = p̃(y′i = +1|x′

i)− p̃(yi = +1|xi), where

p̃(y′i = +1|x′
i) = p(y′i = +1|x′

i) + ζ ′i, ζ ′i ∼ N(0, σ2)

p̃(yi = +1|xi) = p(yi = +1|xi) + ζi, ζi ∼ N(0, σ2), (14)

where ζ ′i and ζi represent the noise offsets which follow a standard Gaussian distribution N(0, σ2).
In our experiments, we set σ = 1/3.
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Table 2: Classification accuracy of each comparing method on six datasets (mean±std) when π = 0.5,
where the best performance is shown in boldface.

m Method MNIST K-MNIST F-MNIST CIFAR-10 Pendigits Optdigits

0

PcompUnbiased 0.815±0.007 0.588±0.087 0.813±0.066 0.752±0.005 0.775±0.018 0.795±0.020
PcompReLU 0.719±0.108 0.692±0.012 0.614±0.132 0.794±0.009 0.746±0.014 0.766±0.038
PcompABS 0.830±0.005 0.727±0.015 0.837±0.010 0.828±0.006 0.645±0.059 0.722±0.027

PcompTeacher 0.882±0.024 0.708±0.008 0.887±0.012 0.812±0.010 0.496±0.016 0.507±0.067
ConfDiffUnbiased 0.723±0.072 0.576±0.029 0.771±0.085 0.848±0.014 0.675±0.071 0.799±0.023

ConfDiffReLU 0.929±0.003 0.771±0.025 0.912±0.020 0.848±0.014 0.675±0.071 0.799±0.023
ConfDiffABS 0.944±0.003 0.825±0.011 0.952±0.004 0.848±0.014 0.675±0.071 0.799±0.023

CRCR_Unbiased 0.777±0.034 0.769±0.004 0.921±0.009 0.869±0.009 0.756±0.006 0.823±0.023
CRCR_ReLU 0.919±0.019 0.685±0.080 0.925±0.017 0.869±0.009 0.753±0.007 0.823±0.023
CRCR_ABS 0.962±0.006 0.848±0.013 0.955±0.002 0.869±0.009 0.753±0.009 0.823±0.023

50

PcompUnbiased 0.814±0.050 0.606±0.086 0.855±0.061 0.733±0.010 0.760±0.020 0.793±0.022
PcompReLU 0.849±0.008 0.722±0.003 0.833±0.063 0.810±0.008 0.756±0.036 0.772±0.017
PcompABS 0.853±0.016 0.730±0.013 0.876±0.015 0.833±0.005 0.676±0.069 0.736±0.017

PcompTeacher 0.898±0.019 0.723±0.018 0.907±0.021 0.812±0.007 0.495±0.017 0.503±0.068
ConfDiffUnbiased 0.678±0.046 0.602±0.021 0.794±0.034 0.833±0.013 0.675±0.073 0.792±0.021

ConfDiffReLU 0.933±0.002 0.766±0.020 0.933±0.012 0.836±0.014 0.675±0.073 0.792±0.021
ConfDiffABS 0.937±0.004 0.819±0.007 0.953±0.007 0.834±0.013 0.675±0.073 0.792±0.021

CRCR_Unbiased 0.845±0.043 0.779±0.008 0.928±0.001 0.859±0.003 0.759±0.029 0.821±0.022
CRCR_ReLU 0.923±0.023 0.793±0.019 0.936±0.007 0.860±0.003 0.757±0.030 0.821±0.022
CRCR_ABS 0.961±0.005 0.851±0.010 0.956±0.005 0.860±0.003 0.762±0.033 0.821±0.022

75

PcompUnbiased 0.849±0.010 0.596±0.086 0.832±0.129 0.716±0.006 0.754±0.028 0.794±0.021
PcompReLU 0.858±0.006 0.728±0.013 0.880±0.012 0.820±0.008 0.743±0.038 0.783±0.018
PcompABS 0.865±0.008 0.734±0.017 0.874±0.011 0.836±0.003 0.688±0.060 0.743±0.020

PcompTeacher 0.908±0.010 0.735±0.013 0.920±0.018 0.813±0.008 0.495±0.018 0.501±0.069
ConfDiffUnbiased 0.620±0.084 0.560±0.025 0.650±0.051 0.844±0.008 0.674±0.073 0.795±0.018

ConfDiffReLU 0.922±0.019 0.778±0.008 0.931±0.015 0.843±0.009 0.674±0.073 0.795±0.018
ConfDiffABS 0.933±0.006 0.817±0.009 0.954±0.004 0.844±0.009 0.674±0.073 0.795±0.018

CRCR_Unbiased 0.797±0.075 0.791±0.010 0.926±0.010 0.858±0.003 0.723±0.033 0.819±0.022
CRCR_ReLU 0.938±0.006 0.792±0.010 0.942±0.005 0.858±0.003 0.721±0.035 0.819±0.022
CRCR_ABS 0.962±0.003 0.851±0.006 0.959±0.001 0.858±0.003 0.756±0.009 0.819±0.022

100

PcompUnbiased 0.832±0.051 0.631±0.079 0.897±0.013 0.708±0.014 0.735±0.024 0.796±0.015
PcompReLU 0.862±0.015 0.726±0.012 0.883±0.017 0.827±0.004 0.725±0.035 0.787±0.019
PcompABS 0.865±0.014 0.735±0.009 0.886±0.009 0.837±0.006 0.688±0.059 0.766±0.020

PcompTeacher 0.914±0.011 0.738±0.020 0.921±0.011 0.812±0.010 0.495±0.018 0.499±0.070
ConfDiffUnbiased 0.631±0.056 0.548±0.022 0.573±0.060 0.835±0.012 0.669±0.070 0.791±0.021

ConfDiffReLU 0.920±0.014 0.769±0.008 0.923±0.032 0.834±0.012 0.669±0.070 0.791±0.021
ConfDiffABS 0.934±0.006 0.812±0.004 0.953±0.005 0.835±0.012 0.669±0.070 0.791±0.021

CRCR_Unbiased 0.860±0.081 0.804±0.009 0.910±0.030 0.851±0.007 0.751±0.008 0.815±0.019
CRCR_ReLU 0.939±0.006 0.797±0.006 0.941±0.006 0.851±0.007 0.752±0.008 0.815±0.019
CRCR_ABS 0.960±0.002 0.856±0.008 0.960±0.002 0.851±0.007 0.752±0.008 0.815±0.019

4.3 RESULT ANALYSIS

Table 2 and Table 3 present the results of all baselines on four benchmark datasets and two UCI
datasets for class-balanced (i.e., prior = 0.5) and class-imbalanced scenarios (i.e., prior = 0.2),
respectively. Accuracy is chosen as the evaluation metric, and experiments are conducted five times
on all datasets, with average and variance results recorded. Overall, our method performs nearly
optimally across all scenarios compared to the baseline methods, consistently achieving nearly the
best results using the ABS risk correction function.

In scenarios with balanced classes, our method outperforms Pcomp by improving accuracy from
0.02 to 0.341 and surpasses ConfDiff from 0.01 to 0.387, as observed from a baseline perspective.
CRCR_ABS outperforms nearly all baselines, with the only observed exception being the results of
PcompUnbiased on the Pendigits dataset when no noise is added. This may be due to the fact that the
Pcomp method leverages only the information that one instance is more likely to be positive than
another, without requiring knowledge of the exact difference between them. The posterior probability
distribution is simply reconstructed in the absence of noise, and this reconstruction function preserves
the monotonic increasing relationship of the posterior probabilities, without altering the relative
likelihood of positivity between instances. Moreover, compared to Pcomp and ConfDiff, our method
demonstrates increasingly stable and consistent accuracy as the noise ratio increases, with notable
improvements in both accuracy and standard deviation, especially when the noise ratio reaches 100%.
This indicates its ability to produce more competitive results in the presence of noise interference.

In scenarios with imbalanced classes, PcompReLU and ConfDiffReLU tend to exhibit random
outcomes when confronted with imbalanced data augmented with noise. This phenomenon may be
attributed to the introduced noise, which significantly increases the likelihood of predictions where
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Table 3: Classification accuracy of each comparing method on six datasets (mean±std) when π = 0.2,
where the best performance is shown in boldface.

m Method MNIST K-MNIST F-MNIST CIFAR-10 Pendigits Optdigits

0

PcompUnbiased 0.744±0.037 0.555±0.076 0.748±0.047 0.634±0.021 0.820±0.025 0.813±0.024
PcompReLU 0.800±0.000 0.800±0.000 0.800±0.000 0.802±0.003 0.819±0.020 0.816±0.007
PcompABS 0.804±0.009 0.800±0.000 0.801±0.001 0.833±0.004 0.797±0.023 0.805±0.006

PcompTeacher 0.788±0.074 0.695±0.046 0.883±0.026 0.813±0.020 0.482±0.212 0.684±0.097
ConfDiffUnbiased 0.743±0.033 0.622±0.077 0.724±0.025 0.812±0.004 0.797±0.028 0.830±0.016

ConfDiffReLU 0.800±0.000 0.800±0.000 0.846±0.064 0.800±0.000 0.797±0.028 0.830±0.016
ConfDiffABS 0.910±0.015 0.841±0.014 0.940±0.010 0.800±0.001 0.797±0.028 0.830±0.016

CRCR_Unbiased 0.816±0.043 0.597±0.055 0.886±0.009 0.841±0.012 0.823±0.005 0.838±0.017
CRCR_ReLU 0.929±0.055 0.814±0.031 0.930±0.049 0.801±0.001 0.817±0.012 0.830±0.008
CRCR_ABS 0.916±0.022 0.856±0.006 0.922±0.007 0.812±0.017 0.784±0.024 0.825±0.005

50

PcompUnbiased 0.742±0.015 0.547±0.038 0.768±0.070 0.623±0.017 0.818±0.025 0.810±0.027
PcompReLU 0.800±0.000 0.801±0.002 0.800±0.000 0.801±0.003 0.806±0.023 0.821±0.007
PcompABS 0.824±0.029 0.800±0.000 0.809±0.006 0.833±0.006 0.801±0.030 0.811±0.010

PcompTeacher 0.822±0.061 0.707±0.062 0.902±0.014 0.797+0.033 0.483±0.211 0.682±0.096
ConfDiffUnbiased 0.694±0.030 0.640±0.043 0.711±0.018 0.805±0.006 0.797±0.029 0.834±0.015

ConfDiffReLU 0.800±0.000 0.800±0.000 0.821±0.046 0.800±0.001 0.797±0.029 0.834±0.015
ConfDiffABS 0.891±0.025 0.818±0.010 0.938±0.014 0.801±0.002 0.797±0.029 0.834±0.015

CRCR_Unbiased 0.794±0.043 0.623±0.079 0.880±0.016 0.789±0.035 0.795±0.025 0.843±0.023
CRCR_ReLU 0.908±0.063 0.815±0.015 0.936±0.043 0.811±0.025 0.808±0.021 0.838±0.014
CRCR_ABS 0.916±0.013 0.830±0.029 0.950±0.011 0.850±0.017 0.822±0.019 0.835±0.011

75

PcompUnbiased 0.753±0.031 0.535±0.048 0.775±0.059 0.616±0.038 0.817±0.017 0.813±0.030
PcompReLU 0.804±0.009 0.804±0.007 0.800±0.000 0.805±0.012 0.822±0.020 0.827±0.008
PcompABS 0.863±0.014 0.800±0.000 0.828±0.016 0.832±0.005 0.803±0.038 0.813±0.009

PcompTeacher 0.840±0.061 0.714±0.055 0.908±0.019 0.793±0.044 0.482±0.211 0.680±0.096
ConfDiffUnbiased 0.704±0.058 0.630±0.026 0.745±0.088 0.804±0.004 0.796±0.031 0.830±0.016

ConfDiffReLU 0.800±0.000 0.800±0.000 0.800±0.000 0.800±0.000 0.796±0.031 0.830±0.016
ConfDiffABS 0.862±0.030 0.806±0.005 0.921±0.023 0.800±0.001 0.796±0.031 0.830±0.016

CRCR_Unbiased 0.792±0.047 0.640±0.028 0.861±0.033 0.772±0.020 0.811±0.030 0.836±0.022
CRCR_ReLU 0.901±0.055 0.817±0.024 0.801±0.001 0.828±0.024 0.827±0.008 0.836±0.017
CRCR_ABS 0.914±0.008 0.819±0.022 0.947±0.006 0.853±0.004 0.819±0.011 0.839±0.012

100

PcompUnbiased 0.752±0.021 0.540±0.069 0.834±0.034 0.643±0.053 0.805±0.024 0.817±0.027
PcompReLU 0.845±0.040 0.808±0.010 0.814±0.019 0.806±0.005 0.808±0.020 0.834±0.008
PcompABS 0.871±0.006 0.801±0.001 0.844±0.015 0.835±0.003 0.803±0.029 0.823±0.012

PcompTeacher 0.869±0.068 0.711±0.062 0.922±0.011 0.787±0.033 0.482±0.211 0.681±0.096
ConfDiffUnbiased 0.772±0.056 0.693±0.028 0.748±0.101 0.810±0.007 0.796±0.028 0.831±0.017

ConfDiffReLU 0.800±0.000 0.800±0.000 0.800±0.000 0.800±0.001 0.796±0.028 0.831±0.016
ConfDiffABS 0.814±0.006 0.801±0.002 0.870±0.043 0.801±0.001 0.796±0.028 0.831±0.016

CRCR_Unbiased 0.790±0.036 0.639±0.059 0.838±0.056 0.780±0.014 0.797±0.018 0.837±0.026
CRCR_ReLU 0.905±0.059 0.808±0.007 0.903±0.039 0.800±0.001 0.800±0.014 0.838±0.020
CRCR_ABS 0.926±0.010 0.828±0.025 0.958±0.009 0.841±0.005 0.810±0.006 0.839±0.019

one instance in a pair is incorrectly predicted to be more likely positive than the other, contrary to
the actual scenario. This contradiction becomes significantly more pronounced as class imbalance
and noise ratio increase. For other baselines, we observe advantages in both accuracy mean and
variance. From the dataset perspective, CRCR_ABS significantly outperforms other methods on the
MNIST, K-MNIST, F-MNIST, and CIFAR-10 datasets in the presence of noise, while maintaining
strong competitiveness on the Pendigits and Optdigits datasets. CRCR_Unbiased shows promising
results without noise; however, the experiments clearly demonstrate that its training challenges on
complex and noisy datasets often lead to a notable decline in performance. This further underscores
the effectiveness of CRCR_ABS in maintaining robust performance when dealing with complex
datasets.

4.4 PARAMETER SENSITIVITY

In this subsection, we conduct experiments with different thresholds θ for partitioning subsets and
the parameter α for the consistency term, and the results are shown in Figure 2.

About different threshold θ To evaluate the sensitivity of the threshold θ, we vary its value within
the range {0.1, 0.2, ..., 1} and examine its influence on four distinct benchmark datasets (i.e., MNIST,
K-MNIST, F-MNIST and CIFAR-10). The results reveal that the accuracy score peaks for the four
benchmark datasets when θ = 0.4 with π = 0.5, and when θ = 0.2 or 0.3 with π = 0.2. This
observation may be attributed to the distribution of confidence differences resembling a waveform
akin to a normal distribution. A low threshold results in numerous inaccurate predictions within the
subset DS utilized for risk consistency, while a high threshold leads to a scarcity of samples within
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Figure 2: Sensitivity analysis of parameters α (top) and θ (bottom) on four benchmark datasets when
π = 0.5 (left) and π = 0.2 (right).

DS , thus diminishing the available supervisory information. Therefore, we empirically recommend
setting the threshold at θ = 0.4 when π = 0.5, and θ = 0.2 or 0.3 when π = 0.2.

About different parameter α To assess the sensitivity of the parameter α, we vary its values across
the range {10i|i = −3, . . . ,+3} and observe its effects on four benchmark datasets. Our analysis
reveals that α shows increased sensitivity on the larger-scale CIFAR-10 dataset when π = 0.5, while
maintaining relatively stable performance on the smaller-scale datasets. Moreover, α leads to a
consistent trend in accuracy variation across the four datasets when π = 0.2. Notably, it achieves
relatively optimal results when α = 1 with π = 0.5, and α = 101 with π = 0.2. Thus, we
recommend setting α = 1 or 101 in experimental setups.

4.5 ABLATION STUDY

In this subsection, we conduct ablation studies on various strategies by setting corresponding param-
eters to zero. Specifically, setting {α = 0, θ = 0} represent versions without consistency strategy
and without subset segmentation strategy, respectively. The experimental results, presented in Figure
1, demonstrate that our proposed subset segmentation strategy and consistency term contribute to
performance improvement to some extent in the context of noisy confidence difference classification.

5 CONCLUSION

In this paper, we propose a novel ConfDiff classification method based on consistency risk and con-
sistency regularization to address the challenge of noisy supervised signals in ConfDiff classification.
We conduct a theoretical analysis of various supervised signals associated with different confidence
differences. Based on this analysis, the ConfDiff dataset is partitioned into two subsets according
to the reliability of the supervised information. For the subset with more reliable supervision, we
employ a consistency risk to preserve precise supervised information. Conversely, for the subset with
less reliable supervision, we leverage consistency regularization to mitigate the impact of erroneous
predictions. Extensive experimental results demonstrate that the proposed CRCR method outperforms
state-of-the-art baselines and exhibits strong robustness, even under artificially induced noise.
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A PROOF OF THEOREM 1

In this appendix, we provide the proof of the Theorem 1 and the corresponding technical lemmas.
Lemma 1. The Rademacher complexity ℜ̄n(LCRCR ◦ G) on D for ConfDiff data with noise of size n
can be defined as follows:

ℜ̄n(LCRCR ◦ G) ≤ 2LℓRn1
(G) + α

log (ε)
Rn2

(G) (15)

The proof of Lemma 1:

ℜ̄n(LCRCR ◦ G) =EDn1
Eσ[sup

g∈G

1

n1

n1∑
i=1

σiLS
CRCR(g;xi,x

′
i)]

+ EDn2
Eσ[sup

g∈G

1

n2

n2∑
i=1

σiLC
CRCR(g;xi,x

′
i)]

=EDn1
Eσ[sup

g∈G

1

n1

n1∑
i=1

1

2
σi((π − ci)ℓ(g(xi),+1) + (1− π − ci)ℓ(g(x

′
i),−1)

+ (π + ci)ℓ(g(x
′
i),+1) + (1− π + ci)ℓ(g(xi),−1))]

+ EDn2
Eσ[sup

g∈G

1

n2

n2∑
i=1

ασi
1

log (|c̃i|+ ε)
· ∥(g(xi)− g(x′

i)∥2]

=EDn1
Eσ[sup

g∈G

1

n1

n1∑
i=1

σi

∥∥▽LS
CD(g;xi,x

′
i)
∥∥
2
g(xi)]

+ EDn2
Eσ[sup

g∈G

1

n2

n2∑
i=1

σi

∥∥▽LC
CD(g;xi,x

′
i)
∥∥
2
g(xi)] (16)

where ∥∥▽LS
CRCR(g;xi,x

′
i)
∥∥
2

=
1

2

∥∥▽((π − ci)ℓ(g(xi),+1) + (1− π − ci)ℓ(g(x
′
i),−1) (17)

+(π + ci)ℓ(g(x
′
i),+1) + (1− π + ci)ℓ(g(xi),−1)

)∥∥
2

≤1

2

(∥∥▽((π − ci)ℓ(g(xi),+1)
)∥∥

2
+
∥∥▽((1− π − ci)ℓ(g(x

′
i),−1)

)∥∥
2

+
∥∥▽((π + ci)ℓ(g(x

′
i),+1)

)∥∥
2
+
∥∥▽((1− π + ci)ℓ(g(xi),−1)

)∥∥
2

)
≤1

2
|π − ci|Lℓ +

1

2
|1− π − ci|Lℓ +

1

2
|π + ci|Lℓ +

1

2
|1− π + ci|Lℓ

≤2Lℓ (18)

and, ∥∥▽LS
CRCR(g;xi,x

′
i)
∥∥
2
=α

∥∥∥∥▽ 1

log (|c̃i|+ ε)
· ∥(g(xi)− g(x′

i)∥2

∥∥∥∥
2

≤α
1

log (|c̃i|+ ε)
· g(xi)− g(x′

i)

∥g(xi)− g(x′
i)∥2

≤ α

log (ε)
(19)

Replacing the corresponding term in Eq.16 with Eq.18 and Eq.19, we can prove the Lemma 1:

ℜ̄n(LCRCR ◦ G) ≤2LℓEDn1
Eσ[sup

g∈G

1

n1

n1∑
i=1

σig(xi)] +
α

log (ε)
EDn2

Eσ[sup
g∈G

1

n2

n2∑
i=1

σig(xi)]

≤2LℓRn1(G) +
α

log (ε)
Rn2(G) (20)
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Lemma 2.

sup
g∈G

∣∣∣R(g)− R̂CRCR(g)
∣∣∣ ≤4LℓRn1

(G) + 2α

log (ε)
Rn2

(G)

+

(
Cℓ

n1
+

∣∣∣∣ 1

log (ε)
− 1

log (θ + ε)

∣∣∣∣ 4αCg
2

n2

)√
2nIn(2/δ) (21)

The proof of Lemma 2: Let R̂CRCR(g) and ˆ̄RCRCR(g) represent the empirical risks of two sets
of training samples, each differing by exactly one point, denoted as {(xi,x

′
i), c(xi,x

′
i)} and

{(x̄i, x̄
′
i), c(x̄i,x

′
i)} respectively.

sup
g∈G

∣∣∣(R(g)− ˆ̄RCRCR(g)
)
−
(
R(g)− R̂CRCR(g)

)∣∣∣
≤ sup

g∈G

∣∣∣R̂CRCR(g)− ˆ̄RCRCR(g)
∣∣∣

≤ sup
g∈G

∣∣∣∣ 1

2n1
(π − c̃i)

(
ℓ
(
g(xi),+1

)
− ℓ
(
g(x̄i),+1

))
(22)

+(1− π − c̃i)
(
ℓ
(
g(x′

i,−1
)
− ℓ
(
g(x̄′

i,−1
))

(23)

+(π + c̃i)
(
ℓ
(
g(x′

i),+1
)
− ℓ
(
g(x̄′

i),+1
))

(24)

+(1− π + c̃i)
(
ℓ
(
g(xi),−1

)
− ℓ
(
g(x̄i),−1

))
(25)

+
α

n2

(
1

log (|c̃i|+ ε)
· ∥(g(xi)− g(x′

i)∥2 −
1

log (|˜̄ci|+ ε)
· ∥(g(x̄i)− g(x̄′

i)∥2

)∣∣∣∣
≤2Cℓ

n1
+

∣∣∣∣ 1

log (ε)
− 1

log (θ + ε)

∣∣∣∣ 2αCg

n2
(26)

Then according McDiarmid’s inequality:

sup
g∈G

∣∣∣R(g)− R̂CRCR(g)
∣∣∣ ≤ EDn

[sup
g∈G

(
R(g)− R̂CRCR(g)

)
]

+

(
2Cℓ

n1
+

∣∣∣∣ 1

log (ε)
− 1

log (θ + ε)

∣∣∣∣ 2αCg

n2

)√
2nIn(2/δ)

≤ 2ℜ̄n(LCRCR ◦ G)

+

(
2Cℓ

n1
+

∣∣∣∣ 1

log (ε)
− 1

log (θ + ε)

∣∣∣∣ 2αCg

n2

)√
2nIn(2/δ)

≤ 4LℓRn1(G) +
2α

log (ε)
Rn2(G)

+

(
2Cℓ

n1
+

∣∣∣∣ 1

log (ε)
− 1

log (θ + ε)

∣∣∣∣ 2αCg

n2

)√
2nIn(2/δ) (27)

The proof of Theorem 1:

R(ĝCRCR)−R(g∗) =
(
R(ĝCRCR)− R̂CRCR(ĝCRCR)

)
+
(
R̂CRCR(ĝCRCR)− R̂CRCR(g

∗)
)

+
(
R̂CRCR(g

∗)−R(g∗)
)

≤
(
R(ĝCRCR)− R̂CRCR(ĝCRCR)

)
+
(
R̂CRCR(g

∗)−R(g∗)
)

≤2 sup
g∈G

∣∣∣R(g)− R̂CRCR(g)
∣∣∣

≤8LℓRn1(G) +
4α

log (ε)
Rn2

(G)

+

(
4Cℓ

n1
+

∣∣∣∣ 1

log (ε)
− 1

log (θ + ε)

∣∣∣∣ 4αCg

n2

)√
2nIn(2/δ) (28)
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B PROOF OF EQ. 6

In this appendix, we provide the proof of the Eq. 6.

Substituting the form of the loss function from Eq.5 into Eq.3, then we can obtain:

RCD(g) =
1

2
Ep(x,x′)

[(
π − c(x,x′)

)
ℓ
(
g(x),+1

)
+
(
1− π − c(x,x′)

)
ℓ
(
g(x′),−1

)
+
(
π + c(x,x′)

)
ℓ
(
g(x′),+1

)
+
(
1− π + c(x,x′)

)
ℓ
(
g(x),−1

)]
=

1

2
Ep(x,x′)

[(
π − c(x,x′)

)(
h(g(x))− g(x)

)
+
(
1− π − c(x,x′)

)(
h(g(x′)) + g(x′)

)
+
(
π + c(x,x′)

)(
h(g(x′))− g(x′)

)
+
(
1− π + c(x,x′)

)(
h(g(x)) + g(x)

)]
=

1

2
Ep(x,x′)

[
h
(
g(x)

)
+
(
1− 2π + 2c(x,x′)

)
g(x)

+h
(
g(x′)

)
+
(
1− 2π − 2c(x,x′)

)
g(x′)

]
=

1

2
Ep(x,x′)

[
h
(
g(x)

)
+ 2c(x,x′)g(x) + h

(
g(x′)

)
− 2c(x,x′)g(x′)

]
+
1

2
Ep(x,x′)

[
(1− 2π

)(
g(x) + g(x′)

)]
=

1

2
Ep(x,x′)

[
h
(
g(x)

)
+ 2c(x,x′)g(x) + h

(
g(x′)

)
− 2c(x,x′)g(x′)

+c(x,x′)h
(
g(x)

)
− c(x,x′)h

(
g(x)

)
+

1

2
g(x)− 1

2
g(x)

+c(x,x′)h
(
g(x′)

)
− c(x,x′)h

(
g(x′)

)
+

1

2
g(x′)− 1

2
g(x′)

]
+
1

2
Ep(x,x′)

[
(1− 2π

)(
g(x) + g(x′)

)]
=

1

2
Ep(x,x′)

[1
2
h
(
g(x)

)
− c(x,x′)h

(
g(x)

)
− 1

2
g(x) + c(x,x′)g(x)

+
1

2
h
(
g(x′)

)
+ c(x,x′)h

(
g(x′)

)
− 1

2
g(x′)− c(x,x′)g(x′)

]
+
1

2
Ep(x,x′)

[
(1− 2π

)(
g(x) + g(x′)

)]
=

1

2
Ep(x,x′)

[1
2
h
(
g(x)

)
− c(x,x′)h

(
g(x)

)
− 1

2
g(x) + c(x,x′)g(x)

+
1

2
h
(
g(x′)

)
+ c(x,x′)h

(
g(x′)

)
− 1

2
g(x′)− c(x,x′)g(x′)

]
+
1

2
Ep(x,x′)

[1
2
h
(
g(x)

)
+ c(x,x′)h

(
g(x)

)
+

1

2
g(x) + c(x,x′)g(x)

+
1

2
h
(
g(x′)

)
− c(x,x′)h

(
g(x′)

)
+

1

2
g(x′)− c(x,x′)g(x′)

]
+
1

2
Ep(x,x′)

[
(1− 2π

)(
g(x) + g(x′)

)]
=

1

2
Ep(x,x′)

[(1
2
− c(x,x′)

)
ℓ
(
g(x),+1

)
+
(1
2
+ c(x,x′)

)
ℓ
(
g(x′),+1

)]
+
1

2
Ep(x,x′)

[(1
2
+ c(x,x′)

)
ℓ
(
g(x),−1

)
+
(1
2
− c(x,x′)

)
ℓ
(
g(x′),−1

)]
+
1

2
Ep(x,x′)

[
(1− 2π

)(
g(x) + g(x′)

)]
. (29)

Then Eq. 6 is proven.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C LIMITATIONS

The noise generation method we proposed primarily utilizes a Gaussian distribution to perturb confi-
dence difference distributions originally concentrated around specific values, aiming to approximate
the confidence difference distributions that may manifest in the real world. Consequently, artificial
datasets are utilized. In the future, we may consider annotating pairwise confidence difference
datasets derived from real-world scenarios. It would allow for experiments using authentic datasets
rather than artificially constructed ones, offering substantial practical significance.

Additionally, the datasets used are actually multi-label datasets although we focus on binary clas-
sification problems in weakly supervised learning. Then the labels of these multi-label datasets
are partitioned into two disjoint subsets, each serving as positive and negative classes, respectively,
thereby converting them into binary classification datasets. In the future, we will consider expanding
the problem scenario to multi-label classification.

D BROADER IMPACTS

The noise confidence difference classification proposed in this paper stands to notably improve
decision accuracy in real-world settings. It addresses potential noise impacts present in real-world data
and holds substantial practical significance as a plausible scenario in weakly supervised domains. Its
applicability can be extended to various fields including medical diagnosis, rehabilitation assessment,
and financial risk management.

However, it’s important to acknowledge that the confidence difference utilized in our method within
weakly supervised settings might be influenced by potential data biases inherent in the real world.
Furthermore, we demonstrate the effectiveness of our approach in weakly supervised scenarios,
there’s a risk of excessive dependence on algorithms for decision-making, potentially overlooking the
cultivation of individual decision-making capabilities and autonomy.
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